

 Navigation

 	
 index

 	
 next |

 	NetScaler API 0.2.3 documentation

NetScaler API

	Summary

	Dependencies

	Example

	Documentation
	API Documentation

	Changelog

	License

	Performance

	Suds WSDL caching

	Command-line example

	Autosave

	UserAdmin - A subclassing example

	Indices and tables

Summary

NetScaler API is a Python interface for interacting with Citrix NetScaler
application delivery controllers, utilizing the SOAP API to execute commands.

Dependencies

:python-suds [http://pypi.python.org/pypi/suds/]: Lightweight SOAP client

Example

Pass any kwargs to init that you would to the suds.client.Client
constructor. A little bit of magic is performed with the ImportDoctor to cover
missing types used in the WSDL.

	If you specify wsdl, this file will be pulled from the default http URL

	If you specify wsdl_url, it will override the wsdl file. Local

	file:// URLs work just fine.

To save time for re-usable code, it is a good idea subclassing this to
create methods for commonly used commands in your application:

class MyAPI(API):
 def change_password(self, username, newpass):
 return self.run("setsystemuser_password", username=username,
 password=newpass)

In a script:

import netscaler

if __name__ == '__main__':
 netscaler.DEBUG = True
 wsdl_url = 'file:///home/j/jathan/sandbox/NSUserAdmin.wsdl'
 client = netscaler.API('nos', username='nsroot', password='nsroot', wsdl_url=wsdl_url)
 print client.logged_in

Documentation

API Documentation

Please review the API Documentation.

Changelog

Please review the Changelog.

License

Please review the License.

Performance

The default NetScaler WSDL is massive and is undoubtedly the most comprehensive
SOAP API I have ever worked with. It is 2.5M as of this writing. It describes
services everything the NetScaler can do, which is overkill for most tools.
Fetching the default NSConfig.wsdl will cause netscaler.py to compile
them all.

This can take a long time:

% time ./nstest.py
WSDL: file:///home/j/jathan/sandbox/NSConfig.wsdl
Starting client...
Done.
./netscaler.py 12.23s user 0.37s system 99% cpu 12.613 total

It will take even longer if you have to download the WSDL every time you start
up your program. So you definitely want to filter your WSDL and the NetScaler
has a CLI tool called filterwsdl that does just that.

If you want more details on why to do it, please read http://bit.ly/aX57SS.

So let’s say we just want to interact with user administration operations. How
about login, logout, savensconfig (of course), and anything with
systemuser in it. It goes like this (run from CLI shell on NetScaler):

filterwsdl /netscaler/api/NSConfig.wsdl +"log*" +"*systemuser*" +"savensconfig" > /netscaler/api/NSUserAdmin.wsdl

Then scp the file to localhost from the device. Now let’s compare:

-rw-r--r-- 1 jathan jathan 2.6M 2009-08-19 00:40 NSConfig.wsdl
-rw-r--r-- 1 jathan jathan 14K 2010-03-02 16:36 NSUserAdmin.wsdl

Big difference. Observe how fast does subset WSDL compiles:

% time ./nstest.py
WSDL: file:///home/j/jathan/sandbox/NSUserAdmin.wsdl
Starting client...
Done.
./netscaler.py 0.36s user 0.03s system 100% cpu 0.392 total

HUGE difference.

Suds WSDL caching

Before we play with it there is one thing to keep in mind about
suds.client. It will cache the WSDL by default, which is helpful for
production but can be confusing while testing and debugging, especially if
you’re tweaking your filtered WSDL. So whenever testing, always pass
cache=None to the constructor to avoid this confusion.

Command-line example

Ok now let’s play with it:

>>> import netscaler
>>> wsdl_url = 'file:///Users/jathan/sandbox/netscaler-api/NSUserAdmin.wsdl'
>>> api = netscaler.API('netscaler', username='nsroot', password='nsroot', wsdl_url=wsdl_url, cache=None)
setting username to nsroot
setting cache to None
setting password to nsroot
wsdl_url: file:///Users/jathan/sandbox/netscaler-api/NSUserAdmin.wsdl
soap_url: http://netscaler/soap/

Now if you print the api object, it acts just like a suds.client.Client
object. Notice this subset of methods is way lower than the 2800+ methods from
the master WSDL:

>>> print api

Suds (https://fedorahosted.org/suds/) version: 0.3.9 GA build: R659-20100219

Service (NSConfigService) tns="urn:NSConfig"
Prefixes (2)
 ns0 = "http://schemas.xmlsoap.org/soap/encoding/"
 ns1 = "urn:NSConfig"
Ports (1):
 (NSConfigPort)
 Methods (10):
 addsystemuser(xs:string username, xs:string password,)
 bindsystemuser_policy(xs:string username, xs:string policyname, xs:unsignedInt priority,)
 getsystemuser(xs:string username,)
 login(xs:string username, xs:string password,)
 loginchallengeresponse(xs:string response,)
 logout()
 rmsystemuser(xs:string username,)
 savensconfig()
 setsystemuser_password(xs:string username, xs:string password,)
 unbindsystemuser_policy(xs:string username, xs:string policyname,)
 Types (54):
 ns0:Array
 ns0:ENTITIES
 ns0:ENTITY
 ns0:ID
 ns0:IDREF
 ns0:IDREFS
 ns0:NCName
 ns0:NMTOKEN
 ns0:NMTOKENS
 ns0:NOTATION
 ns0:Name
 ns0:QName
 ns0:Struct
 ns0:anyURI
 ns0:arrayCoordinate
 ns0:base64
 ns0:base64Binary
 ns0:boolean
 ns0:byte
 ns0:date
 ns0:dateTime
 ns0:decimal
 ns0:double
 ns0:duration
 ns0:float
 ns0:gDay
 ns0:gMonth
 ns0:gMonthDay
 ns0:gYear
 ns0:gYearMonth
 getsystemuserResult
 ns0:hexBinary
 ns0:int
 ns0:integer
 ns0:language
 ns0:long
 ns0:negativeInteger
 ns0:nonNegativeInteger
 ns0:nonPositiveInteger
 ns0:normalizedString
 ns0:positiveInteger
 ns0:short
 simpleResult
 ns0:string
 stringList
 systemuser
 systemuserList
 ns0:time
 ns0:token
 ns0:unsignedByte
 ns0:unsignedInt
 unsignedIntList
 ns0:unsignedLong
 ns0:unsignedShort

Now we can run a command:

>>> api.run("addsystemuser", username='jathan', password='jathan')
config changed, autosaving.
Done
(simpleResult){
 rc = 0
 message = "Done"
}

Autosave

Config changed, autosaving!

You might as yourself why not just directly invoke
api.client.service.addsystemuser(). That’s a good question. It depends on
whether you want to take advantage of the little perks I added like automatic
login and automatic saving of the configuration on volatile operations. Some
people might like these ideas, others might not. Autosave is enabled by
default, but you can disabled it by passing autosave=False to the
constructor.

Currently any command that does not start with login, logout, get,
or save is considered volatile, and will trigger an autosave.

UserAdmin - A subclassing example

In the examples directory is nsuser.py, which is an example of how one might
utilize subclassing to wrap some business logic around certain commands. Here
it is:

class IllegalName(netscaler.InteractionError): pass

class UserAdmin(netscaler.API):
 def is_safe(self, username):
 """Returns False for names containing 'root' or starting with 'ns'."""
 if 'root' in username or username.startswith('ns'):
 return False
 return True

 def add_user(self, username, password):
 """Custom user adder that won't allow unsafe names"""
 if not self.is_safe(username):
 raise IllegalName(username)

 try:
 resp = self.run("addsystemuser", username=username, password=password)
 return True
 except netscaler.InteractionError, err:
 return False

 def del_user(self, username):
 """Custom user remover that protects usernames"""
 if not self.is_safe(username):
 raise IllegalName(username)

 try:
 resp = self.run("rmsystemuser", username=username)
 return True
 except netscaler.InteractionError, err:
 return False

 def user_exists(self, username):
 """Returns True if user exists."""
 try:
 resp = self.run("getsystemuser", username=username)
 return True
 except netscaler.InteractionError, err:
 return False

I used the example of blacklisting the creation or removal of any user that has
“root” in the name or begins with “ns”. So if you try any volatile operations
on this user using this module, this is what happens:

>>> import nsuser
>>> wsdl_url = 'file:///Users/jathan/sandbox/netscaler-api/examples/NSUserAdmin.wsdl'
>>> api = nsuser.UserAdmin('netscaler', username='nsroot', password='nsroot',wsdl_url=wsdl_url, cache=None)
>>> api.del_user('nsroot')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "nsuser.py", line 29, in del_user
 raise IllegalName(username)
nsuser.IllegalName: nsroot

If you run nsuser it does a little addition of missing users or removal of
existing ones with some dummy accounts just to show how it works:

% py nsuser.py
setting username to nsroot
setting cache to None
setting password to nsroot
wsdl_url: file:///Users/jathan/sandbox/netscaler-api/examples/NSUserAdmin.wsdl
soap_url: http://netscaler/soap/
Done
logged in: True
autosave? True

checking jathan
config changed; consider saving!
config changed; autosaving.
Done
jathan added!

checking dynasty
config changed; consider saving!
config changed; autosaving.
Done
dynasty added!

checking john
config changed; consider saving!
config changed; autosaving.
Done
john added!

And the other way:

% py nsuser.py
setting username to nsroot
setting cache to None
setting password to nsroot
wsdl_url: file:///Users/jathan/sandbox/netscaler-api/examples/NSUserAdmin.wsdl
soap_url: http://netscaler/soap/
Done
logged in: True
autosave? True

checking jathan
jathan exists.
deleting
config changed; consider saving!
config changed; autosaving.
Done

checking dynasty
config changed; autosaving.
Done
dynasty exists.
deleting
config changed; consider saving!
config changed; autosaving.
Done

checking john
config changed; autosaving.
Done
john exists.
deleting
config changed; consider saving!
config changed; autosaving.
Done

END TRANSMISSION

Indices and tables

	Index

	Module Index

	Search Page

 Copyright .
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	master

 	latest

 Navigation

 	
 index

 	NetScaler API 0.2.3 documentation

Index

 Copyright .
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	master

 	latest

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

changelog.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NetScaler API 0.2.3 documentation »

Changelog

0.2.3

		[Bug] #2 [https://github.com/jathanism/netscaler-api/issues/2]: Fixed a typo in the call to InteractionError.

		Documentation improvments

0.2.2

		[Bug] #1 [https://github.com/jathanism/netscaler-api/issues/1]: Fixed a bug where setup.py was crashing with an ImportError when
importing the version string from netscaler.py in the case where suds was not
installed.

0.2.1

		Replaced all usage of dictionaries passed by reference in examples with
keyword args.

0.2

		Added setup.py

		Added examples

		Added is_readonly() method to validate commands.

		Added save() shortcut method to self.client.service.savensconfig()

		Implemented autosave whenever a command executed ia run() is not read-only
(Autosave can be disabled by passing autosave=False)

0.1

		Initial release

 © Copyright .
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		master

 		latest

_static/ajax-loader.gif

api.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		NetScaler API 0.2.3 documentation »

API Documentation

 © Copyright .
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		master

 		latest

_static/file.png

search.html

 Navigation

 		
 index

 		NetScaler API 0.2.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		master

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

license.html

 Navigation

 		
 index

 		
 previous |

 		NetScaler API 0.2.3 documentation »

License

Copyright (c) 2006-2012, AOL Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted (subject to the limitations herein) provided that
the following conditions are met:

		Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

		Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

		Neither the name of AOL Inc. nor the names of its employees or of other
contributors may be used to endorse or promote software or products
derived from this software without specific prior written permission.

DISCLAIMER: NO EXPRESS OR IMPLIED LICENSES TO ANY PATENTS OR PATENT RIGHTS ARE
GRANTED BY THIS LICENSE. THIS SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION ARE
PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ITS
EMPLOYEES OR OTHER CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF OR IN CONNECTION WITH THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 © Copyright .
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		master

 		latest

